Part I: 50points, Please describe your answers as complete as possible

1. (12%) Describe what happens to unpolarized light incident on birefringent material when the OA is oriented as shown in each sketch in Fig. 1. Please comment on the following considerations: Single or double refracted rays? Any phase retardation? Any polarization of refracted rays? (OA stands for Optical Axis)

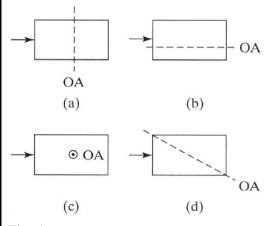


Fig. 1

- 2. (12%) A TEM₀₀ He-Ne laser ($\lambda = 0.6328 \, \mu m$) has a cavity that is 0.34 m long, a fully reflecting mirror of radius $R = 10 \, m$ (concave inward), and an output mirror of radius $R = 10 \, m$ (also concave inward).
 - (a) Determine the location of the beam waist in the cavity.
 - (b) Determine the spot size at the beam waist, ω_0
 - (c) Determine the beam spot size $\omega(z)$ at the left and right cavity mirrors.
 - (d) Determine the beam divergence angle for this laser.
- 3. (11%) Consider the transmission of 10 Gb/s signals at $\lambda = 1500$ nm in a single-mode fiber, with a group velocity dispersion of D = 17 ps/nm-km. Determine the pulse spreading after a transmission of distance 100 km.
- 4. (15%) A Fabry-Perot interferometer is to be used to resolve the mode structure of a He-Ne laser operating at 632.8 nm. The frequency separation between the modes is 150 MHz. The plates are separated by an air gap and have a reflectance (*R*) of 0.999.
 - (a) What is the finesse of the instrument?
 - (b) What is the resolving power required?
 - (c) What plate spacing is required?
 - (d) What is the free spectral range of the instrument under these conditions?
 - (e) What is the minimum resolvable wavelength interval under these conditions?

成大光電所 學年度〔資格考試〕 光電子學 試題 (共 3 頁, 第 2 頁)

Part II: 50points

- 1. (10%) A two-concave resonator has the cavity length of 10 cm, in which the radius of curvature is 20 cm for each mirror.
 - (a) What is the frequency difference between longitudinal modes? What is the frequency difference between transverse modes? Do the cavity configuration satisfy the transverse mode degenerate? (Please interpret your answer.)
 - (b) If the cavity length is tunable, what is the maximal cavity length for the stable condition?
- 2. (10%) What is the spectral hole-burning? Please use the gain curve to explain the multimode oscillation in an inhomogeneous broadening laser system.
- 3. (15%) The index ellipsoid for the KDP with a dc field, E_z, along the crystal z axis is given as

$$\frac{x^2}{n_o^2} + \frac{y^2}{n_o^2} + \frac{z^2}{n_e^2} + 2r_{63}E_z xy = 1$$

where r_{63} is the electrooptic coefficient, and n_o and n_e are the indices for the ordinary and extraordinary rays, respectively. Calculate the V_{π} , the voltage yielding a retardation of π , for the wavelength of λ . Design an electrooptic amplitude modulator based on this KDP.

4. (15%) The optical fields transformed from $E^{(\omega)}$ to $E^{(2\omega)}$ in the second-harmonic generation satisfies the equation:

$$\frac{dE^{(2\omega)}}{dz} = -i\omega\sqrt{\frac{\mu}{\varepsilon}}d[E^{(\omega)}(z)]e^{i(\Delta k)z}$$

where $\Delta k = k^{(2\omega)} - 2k^{(\omega)}$, and d is the nonlinear coefficient. Drive the conversion efficiency from ω to 2ω for a crystal of length l. Explain the condition for the phase-matching and calculate the coherence length for the wavelength of 1 μ m and $n^{(2\omega)} - n^{(\omega)} = 10^{-2}$.

成大光電所 學年度〔資格考試〕 光電子學 試題 (共 3 頁, 第 3 頁)

Part III: 50points

- 1. (a)Please draw the luminescence intensity of the LEDs as a function of the material energy bandgap. (5%)
 - (b)According to the (a) results, please proof its peak value at a frequency v_p determined by

$$hv_p = E_g + \frac{1}{2}kT \cdot (5\%)$$

- 2. GaAs has an intrinsic carrier concentration n_i =1.8×10⁶ cm⁻³, a recombination lifetime τ =50 ns, a bandgap energy E_g =1.42 eV, an effective electron mass m_c =0.07 m_0 , and an effective hole mass m_v =0.50 m_0 . Assume that T=0 °K. Determine the (a)center frequency, (b)bandwidth, and (c)peak net gain within the bandwidth for a GaAs amplifier of length d=200 μ m, and thickness l=2 μ m, when 1 mA of current is passed through the device. (24%)
- 3. A conventional APD with gain G=20 operates at a wavelength λ_0 =1550 nm. (a) If its responsivity at this wavelength is R=12 A/W, calculate its quantum efficiency η . (b)What is the photocurrent at the output of the device if a photon flux Φ =10¹⁰ photons/s, at this same wavelength, is incident on it? (16%)